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1. Introduction

One of the important questions in particle physics today is the nature of physics beyond

the standard model (SM). The new Large Hadron Collider (LHC) machine starting soon,

experiments searching for dark matter of the universe as well as many neutrino experiments

planned or under way, have raised the level of excitement in the field since they are poised

to provide a unique experimental window into this new physics. The theoretical ideas

they are likely to test are supersymmetry, left-right symmetry as well as possible hidden

extra dimensions [1 – 3] in nature, which all have separate motivations and address different

puzzles of the SM. In this paper, I will focus on an aspect of one interesting class of models

known as universal extra dimension models(UED) [4](see for review [5]). These models

provide a very different class of new physics at TeV (see [6] for the constraints on size

of compactification R ) scale than supersymmetry. But in general UED models based on

the standard model gauge group, there is no simple explanation for the suppressed proton

decay and the small neutrino mass. One way to solve the proton decay problem in the

context of total six space-time dimensions, was proposed in [7]. In this case, the additional

dimensions lead to the new U(1) symmetry, that suppresses all baryon-number violating

operators. The small neutrino masses can be explained by the propagation of the neutrino

in the seventh warp extra dimension [8]. On the other hand we can solve both these

problems by extending gauge group to the SU(2)L × SU(2)R × U(1)B−L [9]. Such class of

UED models were proposed in [10]. In this case, the neutrino mass is suppressed due to the

B −L gauge symmetry and specific orbifolding conditions that keep left-handed neutrinos

at zero mode and forbid lower dimensional operators that can lead to the unsuppressed

neutrino mass.
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An important consequence of UED models is the existence of a new class of dark

matter particle, i.e. the lightest KK (Kaluza-Klein) mode [11]. The detailed nature of the

dark matter and its consequences for new physics is quite model-dependent. It was shown

recently [12] that the lightest stable KK modes in the model [10] with universal extra

dimensions could provide the required amount of cold dark matter [13]. Dark matter in

this particular class of UED models is an admixture of the KK photon and right-handed

neutrinos. In the case of the two extra dimensions, KK mode of the every gauge boson

is accompanied by the additional adjoint scalar which has the same quantum numbers

as a gauge boson. In the tree level approximation KK masses of this adjoint scalar and

gauge boson are the same, so they both can be dark matter candidates. The paper [12]

presented relic density analysis assuming either the adjoint scalar or the gauge boson is

the lightest stable KK particle. These assumptions lead to the different restrictions on the

parameter space. My goal in this work was to find out whether radiative corrections could

produce mass splitting of these modes, and if they do, determine the lightest stable one.

In this calculations I will follow the works [14, 15]. Similar calculations for different types

of orbifolding were considered in [16] (T 2/Z4 orbifold), and [17](M4 × S1/Z2 and T 2/Z2

orbifolds).

2. Model

In this sections we will review the basic features of the model [10]. The gauge group of

the model is SU(3)c × SU(2)L × SU(2)R × U(1)B−L with the following matter content for

generation:

Q1,−,Q′
1,− =

(

3, 2, 1,
1

3

)

; Q2,+,Q′
2,+ =

(

3, 1, 2,
1

3

)

;

ψ1,−, ψ′
1,− = (1, 2, 1,−1); ψ2,+, ψ′

2,+ = (1, 1, 2,−1); (2.1)

We denote the gauge bosons as GA, W±
L,A, W±

R,A, and BA, for SU(3)c, SU(2)L, SU(2)R
and U(1)B−L respectively, where A = 0, 1, 2, 3, 4, 5 denotes the six space-time indices. We

will also use the following short hand notations: Greek letters µ, ν, · · · = 0, 1, 2, 3 for usual

four dimensions indices and lower case Latin letters a, b, · · · = 4, 5 for the extra space

dimensions.

We compactify the extra x4, x5 dimensions into a torus, T 2, with equal radii, R, by

imposing periodicity conditions, ϕ(x4, x5) = ϕ(x4 + 2πR, x5) = ϕ(x4, x5 + 2πR) for any

field ϕ. We impose the further orbifolding conditions i.e. Z2 : ~y → −~y and Z ′
2 : ~y ′ → −~y ′

where ~y = (x4, x5), ~y ′ = ~y − (πR/2, πR/2). The Z2 fixed points will be located at the

coordinates (0, 0) and (πR, πR), whereas those of Z ′
2 will be in (πR/2,±πR/2). The generic

– 2 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
7

field φ(xµ, xa) with fixed Z2 × Z ′
2 parities can be expanded as:

φ(+,+) =
1

2πR
ϕ(0,0) +

1√
2πR

∑

n4+n5 -even

ϕ(n4,n5)(xµ)cos

(

n4x4 + n5x5

R

)

φ(+,−) =
1√
2πR

∑

n4+n5 -odd

ϕ(n4,n5)(xµ)cos

(

n4x4 + n5x5

R

)

φ(−,+) =
1√
2πR

∑

n4+n5 -odd

ϕ(n4,n5)(xµ)sin

(

n4x4 + n5x5

R

)

φ(−,−) =
1√
2πR

∑

n4+n5 -even

ϕ(n4,n5)(xµ)sin

(

n4x4 + n5x5

R

)

(2.2)

One can see that only the (+,+) fields will have zero modes. In the effective 4D theory

the mass of each mode has the form: m2
N = m2

0 + N
R2 ; with N = ~n2 = n2

4 + n2
5 and m0 is

the physical mass of the zero mode.

We assign the following Z2 × Z ′
2 charges to the various fields:

Gµ(+,+); Bµ(+,+); W 3,±
L,µ (+,+); W 3

R,µ(+,+); W±
R,µ(+,−);

Ga(−,−); Ba(−,−); W 3,±
L,a (−,−); W 3

R,a(−,−); W±
R,a(−,+). (2.3)

As a result, the gauge symmetry SU(3)c × SU(2)L × SU(2)R × U(1)B−L breaks down to

SU(3)c × SU(2)L × U(1)I3R
× U(1)B−L on the 3+1 dimensional brane. The W±

R picks up

a mass R−1, whereas prior to symmetry breaking the rest of the gauge bosons remain

massless.

For quarks we choose,

Q1,L ≡
(

u1L(+,+)
d1L(+,+)

)

; Q′
1,L ≡

(

u′
1L(+,−)

d′1L(+,−)

)

;

Q1,R ≡
(

u1R(−,−)
d1R(−,−)

)

; Q′
1,R ≡

(

u′
1R(−,+)

d′1R(−,+)

)

;

Q2,L ≡
(

u2L(−,−)
d2L(−,+)

)

; Q′
2,L ≡

(

u′
2L(−,+)

d′2L(−,−)

)

;

Q2,R ≡
(

u2R(+,+)
d2R(+,−)

)

; Q′
2,R ≡

(

u′
2R(+,−)

d′2R(+,+)

)

; (2.4)

and for leptons:

ψ1,L ≡
(

ν1L(+,+)
e1L(+,+)

)

; ψ′
1,L ≡

(

ν ′
1L(−,+)

e′1L(−,+)

)

;

ψ1,R ≡
(

ν1R(−,−)
e1R(−,−)

)

; ψ′
1,R ≡

(

ν ′
1R(+,−)

e′1R(+,−)

)

;

ψ2,L ≡
(

ν2L(−,+)
e2L(−,−)

)

; ψ′
2,L ≡

(

ν ′
2L(+,+)

e′2L(+,−)

)

;

ψ2,R ≡
(

ν2R(+,−)
e2R(+,+)

)

; ψ′
2,R ≡

(

ν ′
2R(−,−)

e′2R(−,+)

)

. (2.5)
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The zero modes i.e. (+,+) fields correspond to the standard model fields along with an extra

singlet neutrino which is left-handed. They will have zero mass prior to gauge symmetry

breaking.

The Higgs sector of the model consists of

φ ≡
(

φ0
u(+,+) φ+

d (+,−)

φ−
u (+,+) φ0

d(+,−)

)

;

χL ≡
(

χ0
L(−,+)

χ−
L (−,+)

)

; χR ≡
(

χ0
R(+,+)

χ−
R(+,−)

)

, (2.6)

with the charge assignment under the gauge group,

φ = (1, 2, 2, 0),

χL = (1, 2, 1,−1), χR = (1, 1, 2,−1). (2.7)

In the limit when the scale of SU(2)L is much smaller than the scale of SU(2)R (that is,

vw ≪ vR) the symmetry breaking occurs in two stages. First SU(2)L × SU(2)R × U(1) →
SU(2)L × U(1)Y , where a linear combination of BB−L and W 3

R, acquire a mass to become

Z ′, while orthogonal combination of BB−L remains massless and serves as a gauge boson

for residual group U(1)Y . In terms of the gauge bosons of SU(2)R and U(1)B−L, we have

Z ′
A =

gRW 3
R,A − gB−LBB−L,A
√

g2
R + g2

B−L

,

BY,A =
gRBB−L,A + gB−LW 3

R,A
√

g2
R + g2

B−L

. (2.8)

Then we have standard breaking of the electroweak symmetry. A detailed discussion of

the spectrum of the zeroth and first KK modes was presented in [12]. The main result of

the discussion is that in the tree level approximation only the KK modes BY,µ BY,a and

ν2 will be stable and can be considered as candidates for dark matter, and the relic CDM

density value leads to the upper limits on R−1 of about 400–650 Gev, and the mass of the

MZ′ ≤ 1.5 Tev. However, radiative corrections can split the KK masses of the BY,µ and

BY,a, and only the lightest of them will be stable. The goal of this work is to find out

which of the two modes is lighter and serves as dark matter.

3. Propagators

To calculate the radiative corrections, we follow the methods presented in refs. [14] and [15].

We derive the propagators for the scalar, fermion, and vector fields in the T 2/(Z2 × Z ′
2)

orbifold, ε and ε′ are the Z2 and Z ′
2 parities respectively, so arbitrary field satisfying the

boundary conditions

φ(x4, x5) = εφ(−x4,−x5)

φ(x4, x5) = ε′φ(πR − x4, πR − x5) (3.1)
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can be decomposed as (we always omit the dependence on 4D coordinates)

φ(x4, x5) = Φ(x4, x5) + εΦ(−x4,−x5)

+ ε′Φ(πR − x4, πR − x5) + εε′Φ(x4 − πR, x5 − πR). (3.2)

The field φ will automatically satisfy the orbifolding conditions of eq. (3.1), and one can

easily calculate 〈0|φ(x4, x5)φ(x′
4, x

′
5)|0〉 in the momentum space. This leads to the following

expressions for the propagators of the scalar, gauge and fermion fields. Propagator of the

scalar field is given by

iD =
i

4(p2 − p2
a)

(

1 + εφε′φeipa(πR)a

)

(

δpap′a + εφδpa−p′a

)

, (3.3)

where pa(πR)a ≡ πR(p4 + p5). Propagator of the gauge boson in(ξ = 1) gauge is

iDAB =
−igAB

4(p2 − p2
a)

(

1 + εAε′Aeipa(πR)a

)

(

δpap′a + εAδpa−p′a

)

, (3.4)

where fields Aa and Aµ will have opposite Z2 × Z ′
2 parities: (εµ = −εa, ε′µ = −ε′a). The

fermion propagator is given by

iSF =
i

4(6p − 6p′a)
(

1 + εψε′ψeipa(πR)a

)

(

δpap′a + Σ45εψδpa−p′a

)

, (3.5)

where we have defined

6pa ≡ p4Γ4 + p5Γ5. (3.6)

4. Radiative corrections to the fermion mass

Now we want to find corrections for the mass of the ν2 field. First let us consider general

interaction between a fermion and a vector boson,

Lint = g6DψΓAψAA, (4.1)

where g6D is 6 dimensional coupling constant that is related to the 4 dimensional coupling

g by

g =
g6D

(2πR)
. (4.2)

The gauge interaction will give mass corrections due to the diagram figure 1 (a). The

matrix element will be proportional to the

iΣ = −
∑

ka

g2

∫

d4k

(2π)4
1

4

1

(p − k)2 − (pa − ka)2

× ΓA
6k − 6k′

a

k2 − k2
a

[δk′
aka

+ εψΣ45δ−k′
a,ka

]ΓA[δ(p−k)a,(p′−k′)a
+ ǫAδ(p−k)a,−(p′−k′)a

] (4.3)
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Figure 1: Fermion self energy diagrams.

The εψ and ε′ψ, are the Z2 × Z ′
2 parities of the fermion and εA , εA′

are the parities of the

gauge boson. The sum is only over the ka which are allowed by the Z2 × Z ′
2 parities i.e.

for the ones where 1 + εψε′ψeika(πR)a 6= 0

There are two types of terms that can lead to the corrections of the fermion self energy,

the bulk terms appearing due to the nonlocal Lorentz breaking effects and brane like terms

which appear because of the specific orbifold conditions, but the bulk terms for fermion

self energy graph appear to vanish (see [15]), so we will concentrate our attention only on

the brane like terms. In the case of our T 2/(Z2 ×Z ′
2) orbifold they will be localized at the

points (0, 0), (πR, πR), (πR/2,±πR/2) (see appendix). The numerator of the integrand

simplifies to

ΓA(6k − 6k′
a)Γ

AεAδ(p+p′)a,2ka
+ ΓA(6k − 6k′

a)Σ45Γ
Aεψδ(p−p′)a,2ka

= 46k′
aε

µδpa+p′a,2ka
+ 46k′

aεψΣ45δ2ka,pa−p′a (4.4)

We can then write eq. (4.3) as

iΣ = −
∑

k′
a

g2

4

∫

d4k

(2π)4
46k′

a(ε
µδpa+p′a,2ka

+ εψΣ45δ2ka,pa−p′a)

((p − k)2 − (pa − ka)2)(k2 − k2
a)

=
−ig2

2(4π)2
ln

(

Λ2

µ2

)[ 6pa+ 6p′a
2

(1+εψε′ψe(pa+p′a)(πR)a/2)εµ

+εψ
6p′a−6pa

2
(1+εψε′ψe(pa−p′a)(πR)a/2)Σ45

]

, (4.5)

where Λ is a cut-off and µ is renormalization scale. After transforming to the position
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space we get

δL =
g2

8(4π)2
ln

(

Λ2

µ2

)

[

δ(I){ψ(i6∂a)(−εψΣ45 + εµ)ψ + ψ(i
←−6∂a)(−εψΣ45 − εµ)ψ}

+ δ(II){ψ(i6∂a)(−ε′ψΣ45 + εµ)ψ

+ψ(i
←−6∂a)(−ε′ψΣ45 − εµ)ψ}

]

, (4.6)

where

δ(I) ≡ δ(xa) + δ(xa − πR), δ(II) ≡ δ(xa − πR/2) + δ(xa + πR/2), (4.7)

and ψ is normalized as four dimensional fermion field related to the six dimensional field by

ψ = ψ6D(2πR). In our case the corrections to the self energy of the neutrino will arise from

the diagrams with W+
R , Z ′, but one can see that these fields have nonzero mass coming

from the breaking of SU(2)R, thus in eq. (4.5) p̃2 → p̃2 +(1−α)M2
W±

R
,Z′

. The contribution

of the diagram with W±
R will be

δL =
g2
R

8(4π)2
ln

(

Λ2

µ2
WR

)

[

δ(I){νR
2 (−∂4 − i∂5)ν

L
2 + (−∂4 + i∂5)ν

L
2 νR

2 }

+ δ(II){νL
2 (−∂4 + i∂5)ν

R
2 + (−∂4 − i∂5)νR

2 νL
2 }

]

, (4.8)

where µ2
WR

∼ µ2 + M2
WR

. The terms proportional to the δ(I) and δ(II) will lead to the

corrections to the four dimensional action that will have equal magnitude and opposite sign,

so the total correction to the fermion mass will vanish. The contribution of the diagram

with Z ′ will lead to the

δL =
g2
R + g2

B−L

16(4π)2
ln

(

Λ2

µ2
Z′

)

[

δ(I){νR
2 (−∂4 − i∂5)ν

L
2 + (−∂4 + i∂5)νL

2 νR
2 }

+ δ(II){νL
2 (∂4 − i∂5)ν

R
2 + (∂4 + i∂5)ν

R
2 νL

2 }
]

, (4.9)

where µ2
Z′ ∼ µ2 +M2

Z′. Let us look on the first term of the formula (4.9), it is proportional

to the δ(I)νR
2 ∂aν

L
2 , but one can see from the KK decomposition (2.2), that profiles of the

νR
2 (+,−) and ∂aν

L
2 (−,+) are both equal to the cos(n4x4+n5x5

R ) i.e. are maximal at the δ(I).

The same is true for the others terms of the (4.9), thus the correction to the effective 4D

lagrangian, and KK masses will be1

L4D =
g2
R + g2

B−L

4(4π)2
ln

(

Λ2

µ2
Z′

)(−n4 − in5

R

)

[νR
2 νL

2 + νL
2 νR

2 ]

δmν(n4,n5) =
(g2

R + g2
B−L)

√

n2
4 + n2

5

4R(4π)2
ln

(

Λ2

µ2
Z′

)

. (4.10)

1We are assuming that at the cut off scale brane like terms are small, and that one loop brane terms are

small compared to the tree level bulk lagrangian, so to find mass corrections we can use unperturbed KK

decomposition and ignore KK mixing terms , in this approximation our results coincide with the results

presented in [18].
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So the correction to the mass of the first KK mode for ν2 will be:

δmν =
(g2

R + g2
B−L)

4R(4π)2
ln

(

Λ2

µ2
Z′

)

. (4.11)

Now we have to evaluate contribution of the diagram figure 1 (b)

iΣ =
∑

ka

f2

∫

d4k

(2π)4
1

4

1

(p − k)2 − (pa − ka)2
6k − 6k′

a

k2 − k2
a

[εψΣ45δpa−p′a,2ka
+ εφδpa+p′a,2ka

],

(4.12)

where f is the 4D Yukawa coupling , and again we will consider only the terms that are

localized at the fixed points of the orbifold.

iΣ =
∑

ka

f2

∫

d4k

(2π)4
1

4

∫ 1

0
dα

(6k − 6k′
a)[εψΣ45δpa−p′a,2ka

+ εφδpa+p′a,2ka
]

[k2 − k2
a(1 − α) − 2(kp)α + p2α − (pa − ka)2α]2

(4.13)

Proceeding in the same wave as we have done for the diagram with the vector field we find

iΣ =
if2

16(4π)2
ln

(

Λ2

µ2

)

[

(6p − 6p′a + 6pa)εψΣ45(1 + εψε′ψe(pa−p′a)(πR)a/2) +

+ (6p − 6p′a − 6pa)εφ(1 + εψε′ψe(pa+p′a)(πR)a/2)
]

. (4.14)

In our model we have the following Yukawa couplings

ψ
−
1 Φψ+

2 = ν1Φ
0
dν2 + e1Φ

−
d ν2 + ν1Φ

+
u e2 + e1Φ

0
ue2 (4.15)

So the corrections to the self energy of neutrino will arise from the diagrams with Φ0
d and

Φ−
d . This leads to the following corrections in the lagrangian

δL =
f2

32(4π)2
ln

(

Λ2

µ2

)

[

δ(I)
{

νR
2 6∂νR

2 + νR
2 (∂4 + i∂5)ν

L
2 + (∂4 − i∂5)νL

2 νR
2

}

+

+δ(II)
{

−νL
2 6∂νL

2 +νL
2 (∂4 − i∂5)ν

R
2 +(∂4+i∂5)νR

2 νL
2

}]

(4.16)

The terms proportional to δ(I) and δ(II) lead to the corrections to the four dimensional

action that will cancel each other, so the total mass shift due to the diagrams with Φ0,−
d will

be equal to zero, thus the mass of the neutrino will be corrected only due to the diagram

with the Z ′ boson (4.11).

5. Corrections to the mass of the gauge boson

As we have mentioned above the dark matter in the model [10] is believed to consist

from mixture of the KK photon and right handed neutrinos, so we are interested in the

corrections to the masses of the BY,a and BY,µ bosons. The lowest KK excitations of the

BY,a and BY,µ fields correspond to |p4| = |p5| = 1
R , so everywhere in the calculations we

set (p4 = p5 ≡ 1
R ). At the tree level both BY,a and BY,µ fields have the same mass

√
2

R , but

– 8 –
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Figure 2: Self energy diagrams for the BY µ fild:(a, b)-loops with W±

R,mu, (c)-ghost loop, (d, e, f)-

loops with W±

R,−, (g, h, i)-with goldstone bosons χ±

R, (j)-fermion loop.

radiative corrections can split their mass levels, and only the lightest one of these two will

be stable and could be the candidate for the dark matter. In this case the bulk corrections

do not vanish by themselves but as was shown in the [15] lead to the same mass corrections

for the BY,µ and BY,a fields.

First we will calculate radiative corrections for the BY,µ field (calculations are carried

out in the Feynman gauge ξ = 1 ), see figure 2 for the list of the relevant diagrams. The

contribution of every diagram can be presented in the form:

iΠµν =
i

4(4π)2
g2
B−Lg2

R

g2
R + g2

B−L

ln

(

Λ2

µ2
WR

)

×
[

Ap2gµν + Bpµpν + C
p2

a + p′2a
2

gµν + DM2
WR

gµν

]

(5.1)

The coefficients A,B,C,D are listed in the table 1. The sum of all diagrams is equal

to

iΠµν =
i

4(4π)2
g2
B−Lg2

R

g2
R + g2

B−L

ln

(

Λ2

µ2
WR

)

[

14gµν
p2

a + p′2a
2

+
22

3
(p2gµν − pµpν)

]

. (5.2)
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Diagram A B C D

(a) 19/3 -22/3 9 18

(b) 0 0 -6 -12

(c) 1/3 2/3 -1 -2

(d) 4/3 -4/3 -4 -8

(e) 0 0 4 8

(f) 0 0 12 0

(g) χ±
R 0 0 -2 -4

(h) χ±
R -2/3 2/3 2 4

(i) 0 0 0 -4

(j) 0 0 0 0

Table 1: Coefficients A,B,C,D for the self energy diagrams for BY,µ from the gauge sector and χ±

R.

this leads to the following corrections to the lagrangian

δL =

(

−22

3

(

−1

4
FµνFµν

)

−7BY µ(∂2
aBµ

Y )

)

[

1

4(4π)2
g2
B−Lg2

R

g2
R+g2

B−L

ln

(

Λ2

µ2
WR

)]

[

δ(I)−δ(II)

4

]

(5.3)

These diagrams will not lead to the mass corrections due to the factor [δ(I) − δ(II)].

The field BY also interacts with χL and φ, because the U(1)Y charge is equal to QY =

T 3
R +

YB−L

2 , where YB−L is U(1)B−L hypercharge. These diagrams will have the same

structure as diagrams (g) and (h), the only difference will be that χL and φ will have no

mass from the breaking of SU(2)R. The contribution from the fields χL and φ0,+
d will have

the factor [δ(I) − δ(II)], so only the loops with φ0,−
u lead to the nonvanishing result.

δL =
1

12(4π)2
g2
B−Lg2

R

g2
R + g2

B−L

ln

(

Λ2

µ2

)[

δ(I) + δ(II)

4

](

−1

4
FµνFµν

)

δm2
BY,µ

= − 1

12(4π)2
g2
B−Lg2

R

g2
R + g2

B−L

2

R2
ln

(

Λ2

µ2

)

. (5.4)

Now we will calculate the mass corrections for the BY,a field. At the tree level the mass

matrix of the BY,a arises from (−1
2 (F45)

2), and it has two eigenstates: massless and massive.

The massless one is eaten to become the longitudinal component of the KK excitations of

the BY µ field, and the massive state behaves like 4D scalar, and is our candidate for dark

matter. In our case (p4 = p5 = 1
R), the (B+ ≡ B4+B5√

2
) is the longitudinal component of

the BY µ, and B− ≡ B4−B5√
2

is the massive scalar. Nonvanishing mass corrections will arise

only from the loops containing φ0,−
u fields, the other terms will cancel out exactly in the
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same way as for the BY µ field.

iΠab =
−i

4(4π)2
g2
B−Lg2

R

g2
R + g2

B−L

[pcp
′
cδab − pap

′
b] ln

(

Λ2

µ2

)

δL =
1

2
(F45)

2

[

1

4(4π)2
g2
B−Lg2

R

g2
R + g2

B−L

ln

(

Λ2

µ2

)

]

[

δ(I) + δ(II)

4

]

δm2
BY −

= − 1

4(4π)2
g2
B−Lg2

R

g2
R + g2

B−L

2

R2
ln

(

Λ2

µ2

)

(5.5)

Comparing equations (5.5) and (5.4), we see that in the one loop approximation BY − will

be the lighter than BY µ, so our calculations predict that within the model [10], dark matter

is admixture of the BY − and ν2 fields. It is interesting to point out that the same inequality

for the radiative corrections to the masses of the gauge bosons was found in the context of

model [16].

6. Conclusion

We studied the one-loop structure in the field theory in six dimensions compactified on

the T2/(Z2 × Z ′
2) orbifold. We showed how to take into account boundary conditions on

the T2/(Z2 ×Z ′
2) orbifold and derived propagators for the fermion, scalar and vector fields.

We calculated mass corrections for the fermion and vector fields, and then we applied

our results to the lightest stable KK particles in the model [10]. We showed that the

lightest stable modes would be, BY − and ν2 fields. These results are important for the

phenomelogical predictions of the model.
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A. Operators localized in the fixed points

In the appendix we will show that contribution of the terms, which do not conserve mag-

nitude of the |pa|, will lead to the operators localized at the fixed points of the orbifold.

We will follow the discussion presented in the work of H.Georgi, A.Grant and G.Hailu [14]

and apply it to our case of T 2/(Z2 × Z ′
2) orbifold. So let us consider general expression.

∑

p′a=pa+ ma
R

1

2

(

1 + eiπ(m4+m5)
)

ψ(p′)Γψ(P ) (A.1)

where Γ is some generic operator, ψ is six-dimensional fermion field, and factor 1 +

eiπ(m4+m5) appears because initial and final fields have the same (Z2 × Z ′
2) parities. The
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action in the momentum space will be given by

S =
∑

pa

1

(2πR)2

∑

p′a=pa+ ma
R

1

8

(

1 + εeε
′
ee

i(πR)apa

)

(

1 + eiπ(m4+m5)
)(

1 + εiε
′
ie

i(πR)aka

)

ψ(p′)Γψ(p), (A.2)

where εi,e, ε′i,e are the Z2 and Z ′
2 parities for the particles in the internal and external

lines of the diagram respectively, and ka is the momentum of the internal line (we omit

integration over the 4D momentum in the expression). Transforming fields ψ to position

space we get

S =
1

8(2πR)2

∑

pa

∑

p′a=pa+ ma
R

∫

dxadx′
ae

−ip′ax′
a+ipaxa · (A.3)

·
[(

1 + εeε
′
ee

i(πR)apa

) (

1 + εiε
′
ie

i(πR)a(pa±pa±ma/R)/2
) (

1 + eiπ(m4+m5)
)]

ψ(x′)Γψ(x),

the upper and lower signs in the expression (1 + εiε
′
ie

i(πR)a(pa±pa±ma/R)/2) correspond to

the ka = pa±p′a
2 in the propagator. Now we can use identities:

∑

pa

eipa(xa−x′
a)

(2πR)2
= δ(xa − x′

a),

∞
∑

m=−∞
e

imx
R =

∞
∑

m=−∞
δ(m − x

2πR
). (A.4)

so

S =
1

4

∫

d(6)x ψ(x)Γψ(x)
∑

ma

[

δ
(

ma −
xa

2πR

)

+ δ

(

ma −
1

2
− xa

2πR

)

+ (A.5)

+

(

δ

(

ma −
1

4
− xa

2πR

)

+ δ

(

ma +
1

4
− xa

2πR

))

·
{

(εiε
′
i)(εeε

′
e) for ka = pa+p′a

2

εiε
′
i for ka = pa−p′a

2

]

So the brane terms will be localized at the points (0, 0), (πR, πR), (±πR/2,±πR/2).
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